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Using modern estimates and exact values of critical points and exponents for Ising systems, existing series

expansions for various lattices are analyzed to estimate the universal amplitud®q=t{€ ;)%/C*C¢,

where C* are the amplitudes of divergence of the susceptibijifyabove and belowl, while C are,
similarly, the amplitudes forzxk‘z)(/ahk‘z)hzo; we obtainRy=0.1582t0.0002 ford=2 dimensions and
0.1275-0.0003 ford=3. Similarly, we find the universal ratid ; /C ; =—9.0+0.3 and—121.5-0.5 ford=3

and 2, respectively. On using existing estimates@dr, for the second-moment correlation-length amplitude

f1, and for the universal ratio€ */C™ andf;/f], we estimate the renormalized coupling constants to be

g% =G,y =-C;/(C")%(f;a)%vy=24.45-0.15 ford=3 and 14.708:0.017 ford=2. BeneathT, we find
Gi=-501+60, —1768+80 and —C;B/(C7)?=6.4,+0.2, 33.Q+0.1, where B is the spontaneous-
magnetization amplitude, and theng&=85 and 23 ford=3 and 2, respectivel\jS1063-651X96)04008-]

PACS numbg(s): 05.50:+q, 03.70+k, 64.60—i, 75.10.Hk

I. INTRODUCTION ax Px
Sp Gt 78 S ~Crlt T, (19
Perturbative expansions gf field theory at fixed dimen-
sion d<4 have been studied to calculate critical exponentstc., whent—0=, where, via the scaling relations, we have

such asa,B, etc.[1,2]. An important parameter that enters A= B+y=1+3(y—a). The second-moment correlation
the calculations is the renormalized coupling constanin  |ength £,(T) [8] diverges as

the critical region, the bare coupling constaggtof the initial
Hamiltonian becomes infinite on the scale fixed by the cor- &~frajt]™”, t—0=, 1.5
relation lengtH 3,4], whereas the renormalized coupling con-

stantg will approach a finite nonzero limg* at criticality =~ Wherea is the lattice spacing, while the spontaneous magne-
provided that hyperscaling holdgl—6]. Even though the tization varies as

renormalized coupling constagt plays an important role, it P

seems not to have been analyzed by series extrapolation Mo/ uo=(s)o~BJt[*. 16
techniques in light of recently improved knowledge of criti-
cal points and exponents for Ising systefiis Accordingly,
we have undertaken to estimagg=g?* and alsog* , the
renormalized coupling constant benedththat has a quite

Now, according to scaling and universality concepts, the
dimensionless amplitude ratiof;/f;, C*/C~, and

C4/C are universal, depending only @h(for Ising sys-
temg. Watson[9] seems to have been the first author to
Stress this and provide examples. Two other universal dimen-
ratios for Ising lattices; we use existing long series expan ionless combinations, involving amplitudes defined only

sions for various lattices together with modern estimates Ogbove or only belowT,, are[9,10] the sixth-order and third-
exponents and critical temperatures. order ratios e '

To be more explicit, we employ the reduced temperature
variable Ro=(C;)?/C*C{, Ry=—CzB/(CT)2 (1.7

t=(T-To)/T, (1.1 Finally, the renormalized coupling constagt can be

) defined by[3,4,6
and the reduced field

e o (8*xIdh?)
h=uoH/kgT, 1.2 gi=— lim

) 1.8
o+ X*E1/vo h=0

wherey, is the magnetic moment per Ising sgir= +1. For

L whereuv is the volume per lattice site. In terms of the critical
h=0, the reduced susceptibility diverges as vo b

amplitudes, the renormalized coupling constant can be writ-
T ten
x=(am/oh)1/ue=~C*[t|~?, t—0=, (1.3
_ o o gt =G=—C,/(CHX )Y@y, (1.9
wherem(T,h) is the mean magnetization per spin. Likewise,
the higher field derivatives behave as where the factom%v, enters to account for the different
lattice geometries. It takes the value 1 for the plane square
(so) lattice and 2¥3 for the triangular(tri) lattice. Ind=3,
* Author to whom correspondence should be addressed. one hasad/v0=1, 2v3, and v2 for the simple cubic(so),
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54 RENORMALIZED COUPLING CONSTANTS FOR ISING SYSTEMS 1177
TABLE |. Summary of the critical values and amplitudes for Ising lattices. d=eB, the critical expo-
nents adopted are=0.6320 andy=1.2395. All other exponents used follow from the scaling and hyper-
scaling relations. The values and uncertainties of the critical pointsstanh@/kgT.)] are those of Liu and
Fisher[7]; the amplitudesB, C*, and f; are derived from their estimates by interpolation. The asterisk
indicates that the exactly knowtrue correlation length amplitudé™ is quoted in place of ;.
sq tri scC bcc fcc
V¢ v2—1 2-V3 0.218 071 0.156 082 0.101 709
+0.000 012 +0.000 007 +0.000 005
B 1.222 410 1.203 270 1.68 1.61 1.591
+0.03 +0.0% +0.007
ct 0.962 582 0.9242 1.0928 1.0216 1.0034
+0.0002 +0.0010 +0.0008 +0.0005
Cs —0.0176 —0.016 52 —0.186 —-0.171 —0.168
+0.0005 +0.000 05 +0.002 +0.002 +0.003
Cs —4.3788 —4.0001 —3.630 —3.236 —3.1704
+0.0003 +0.0005 +0.003 +0.002 +0.0012
-0.017
C, 0.0360 0.0330 0.40 0.36 0.357
+0.0001 +0.0002 +0.03 +0.03 +0.008
fr 0.567 298 0.525 526* 0.4984 0.4608 0.4496
+0.0010 +0.0002 +0.0006
—0.0050
body-centered-cubitbcc), and face-centered-cubffcc) lat- —13  A=11
. - . . Y ) 81
tices, respectively7]. By using the amplitudes beneadih,
one can defings; in the same way and it should also be ve=tanhJ/keT)=vZ—1 (s0), (1.12
universal.
However, belowT,, the renormalized coupling constant v=2-V3 (tr).

g* differs fromG; owing to the broken symmetry. In con-
ception, the renormalized coupling constant is closely related For d=3 Ising systems the corresponding parameters are
to the fourth derivative of the “Helmholtz free energy” now rather well known as a result of series extrapolation and
A(T,m) with respect to the order parametarsinceA(T,m)  Monte Carlo and renormalization-group studj@sl1]. The
resembles the underlying field-theoretic or Landau-values we have adopted are summarized in Table I. The lead-
Ginzburg-Wilson Hamiltonian most closely. Thus, by relat- ing correction-to-scaling term is important in estimating vari-
ing (9*A/9m?) to appropriate field derivatives and replacing ous critical parameters including the amplitudes. Recent
(#xI9h?) in (1.8) by its counterpart, one can defigé below  work [11-14 indicates that the corresponding correction ex-
criticality via ponent is given by

0=0.54+0.03. (1.13

*

o* = lim (aZX/ahz)—:%(aX/ah)Z/X\

2 ¢d
t—0— X“&1lvg ‘h:O

(1.10 To estimate the various critical amplitudes from series
data, we have employed inhomogeneous differential approxi-
mants(DAs). A particular DA for a given series is denoted
[K/L;M], whereK, L, andM are degrees of the polynomi-
als that enter into the definition of the approximant: details of
the approach used are given in REf]. It has also proved
convenient to use direct Pad@proximants IL./M], which,
however, do not allow effectively for explicit background
terms.
(1.12 In the following we first review, in Sec. I, the original
estimates foilR, obtained by Watsof9] and the predictions
It turns out(via our results as summarized in Table) hat  of the linear modef10]. Then we analyze currently available
g* is positive, wherea&; is negative. Naturally, for rea- Ising model series data to estimdgfor d=2 and 3. In Sec.
sons of stability, one expects the renormalized constant to bkl the critical amplitudesC; are studied for sq, tri, sc, bcc,
positive. and fcc lattices: these yield estimates for the ratip/C
Of course, the critical exponents and temperatures are exand confirm its universality. In Sec. IV the amplitu@qg is
actly known ford=2 Ising systems. We will use estimated for all these lattices; it is then used for studying the

Note that, abovd ., the derivative(dy/dh) vanishes identi-
cally whenh=0, so this expression, in effect, reduces to
(1.8). In terms of the critical amplitudes beloW,, this
yields

g*=—[C,; —3(C3)%C 1/(C)3(f])%a%vy).
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TABLE Il. Estimates for the sixth-order amplitude raf®y, for the bcc lattice obtained via direct Pade
approximants evaluated at the critical point specified in Table I.

[L/M] Ro [L/M] Ro [L/M] Ro
[4/7] 0.12756 [4/8] 0.12750 [4/9] 0.12744
[5/6] 0.12741 [5/7] 0.12720 [5/8] 0.12738
[6/5] 0.12748 [6/6] 0.12708 [6/7] 0.12733
[7/4] 0.12748 [7/5] 0.12745 [7/6] 0.12738
[8/4] 0.12736 [8/5] 0.12716
[9/4] 0.12721
third-order amplitude ratidR;. Recent estimates are com- b%=(6—3)/(6—1)(1-2B) where 5=A/B, (2.5

bined with the up-to-date values f@" andf; on various _ _ _
d=3 lattices in Sec. V to give estimates for the renormalizedVhich was recommended by Schofield, Litster, and[Hd.

coupling constantg® . The results are summarized briefly in At this value ofb the predicted rati€*/C™ passes through
Sec. VI. a minimum for fixed exponents. This choice leads to

B 3y(1-vy)
C5[(2—a)’+2y(2a—y—1)]"

II. SIXTH-ORDER AMPLITUDE RATIO Ro (2.6)

As mentioned, Watsof®] noted that certain combinations
of critical amplitudes should be universal and for the exactl
solublespherical modehe found

Surprisingly, this also proves to be an extremum function of
yb; but it is a maximum rather than a minimum. Using the
exactd=2 values and the estimates fo+=3 in Table I, the

special linear model thus predicts
_[56—5=0.10909... (d=3) o P P
0_ .

L (d=4), R,=0.140 00 (d=2)

10
where the spherical model value fde=4 also follows from =0.1237 (d=3). @7
mean field theory. Then he used the individual amplitudesThese values correlate quite well with.2). The ~11% de-
C*, C4, andCg for the Ising model on various lattices as viation for d=2 is not surprising since the linear model is
estimated by Essam and Hunf&6]. This supported the uni- known to fail ford=<3.

versality hypothesis for Ising systems and led to Since Essam and Hunter's work in 1968, longer Ising
model series have become availaf®€,21]: in terms of the
0.156 (d=2) standard high-temperature variable=tanh@/kgT), these

(2.2

Ro= 0.129 (d=3). are known to ordep ! for the plane triangular lattice and to

) ) ) _ order v*’ for the square lattice. Fod=3, the expansions
It is also instructive to compute the universal rafilgby  have been derived to orderd’, v23 v1° andvl® for the sc,

using the so-called linear model of SChOflé]Iﬁ—la, which bcc, fcc, and diamon(jjia) lattices, respective|y_

is a specific approximate, parametric representatid@) of To estimateR, we form the series for the ratio function
the Ising equation of state in the scaling region. In the linear ) - . .
modelt, h, andm are related via R(T)=[(9"xIdh*) o] Ix(T)("x/ %), (2.8
t=r(1-b26%), h=r%1,6(1-6%), m=rPfmy, which should exhibit the critical behavior
2.3 R(T)=Rg(1+rgt?+rt+--+) (2.9

whereb>1 andl, andm, are positive constants. The param- whent—0+. SinceR(T) remains finite afl ., it is reason-
eter r measures distance from criticality, whil@ is a able to examine near-diagonal direct Paajgproximants
pseudopolar angle in the, () or (t,h) planes. Although the [L/M] to the series. Data for the bcc lattice with- M =11,
linear model is not exact, it embodies the scaling laws and 2, and 13 are displayed in Table Il. Evidently, the values
correct analytic behavior in all limits. Furthermore, it agreesare quite well converged.

precisely with thee expansion to ordee? [19]. The other lattices exhibit equally good behavior except
After some labof10], one finds that the sixth-order am- that occasional approximants contain “tears,” i.e., close-by
plitude ratio for the linear model can be written zero-pole pairs in the physical regiorsuv,; such defective
approximants are discarded since, in general, they are of
3(1-b?y)? lower reliability. To summarize, the last three orders for the

RO_5[2(1— b%y)(3—2b%A)+b*y(y—1)]" (24 sc lattice generate approximants lying in the ranges 0.127 83
+5, 0.127 849, and 0.127 9818 to order 17, where, in
For the mean field exponenis=A—pB=1 andA=3/2, R, is this section, the uncertainties quoted refer to the last decimal
seen to be independent of the paramdteiand the mean place of the central value. For the fcc lattice we find 0.127 97
field resultR,=15 is recovered. Otherwis®, depends o. +40, 0.127 5322, and 0.127 534 to order 10 and for the

To proceed, one may adopt the value diamond lattice with v,=0.353 81 [15], 0.127 6183,
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TABLE IIl. Universal amplitude ratios. The ratib;/f] in d=2 is quoted from Ref[24]. In three
dimensions, the estimates f&*/C~ andf{/f] are those of Ref[7]. For the mean-field theor¢MFT)
results, see Sec. V.

Ratio d=2 d=3 MFT
ct/c 37.693 562 4.9%0.15 2
Ry=—C3B/(C7)? 33.0+0.1 6.4+0.2 3
cilcy —121.5:0.5 —9.0+0.3 -2
Ro=(C7)4C*C¢ 0.1582+0.0002 0.127%0.0003 i
fi/f7 3.22+0.08 1.96-0.01 V2
g* 14.700+0.017 24.45-0.15 128
g* 23 85 128
Gy —1768+80 —501+60 —1024

0.127 8147, and 0.127 8%37, to order 17. By examining That, in turn, would allow for the effects of the nonanalytic
the full tables and the trends, one sees that universality isorrection and yield improved estimates Bf, from the
rather well confirmed. Explicitly, for the individual lattices, “background”: seg[7]. In practice, however, the amplitude

we estimate a, seems to be too small to be detectable in this way. Indeed,
unbiased approximants yield a wide range of critical point
0.1275-1 (fco) estimates and a corresponding rangedoéstimates. Even
Ro= 0.1274:2  (bco (2.10 when the preferred critical point is imposed, the distribution
07 0.1279-3 (s© ' of 6 estimates is broad and indefinite; the corresponding es-
0.1280+5 (dia). timates forR, are quite consistent with the direct Padi@ta

(as in Table [}, but the spread is much larger. In short, as
Overall, accepting universality, we adopt the value entered imlready indicated by the insensitivity to the assigned critical
Table IIl. point, the leading singular term in the expansi@?9) is
For the planar lattices, one finds ranges 0.15808, either intrinsically small or is effectively cancelled by a com-
0.158 4946, and 0.158 0610 for the square lattice to or- bination of analytic and higher order contributions. No ad-
der 17 and 0.158 188, 0.158 16-6, and 0.158 182 for the  vantage accrues by attempting to allow for it.
triangular lattice to order 14. Universality is again confirmed:  Finally, we remark that our estimates differ from Wat-
our overall estimate is given in Table III. son’s in(2.2) by only +1.4% and—1.2% ford=2 and 3,
It is appropriate to test the sensitivity of the estimatesrespectively, while the special linear model value der3 is
found to changes in the assumed critical points. In essencapout 3% low.
this also checks the magnitude and significance of the cor-
rection terms in(2.9). To this end, Table Il has been recom- IIl. FOURTH-ORDER SUSCEPTIBILITY
puted using the valuel(kgT.)=0.157 408[10], which ac- AMPLITUDE RATIO
tually lies well outside the range stated in Table I. The
resulting changes are very small: specifically, each entry Mean-field theory leads to the ratio
drops by one digit in the last decimal place. Since this is less
by a factor 10 or more than the changes from approximant to C,IC,=-2 (3.1
approximant, the effect is quite negligible. For other lattices
the influence of the precise value of the critical point is com-for the fourth-order susceptibilities above and beldw.
parably small. Owing to the presence of “spin-wave” modes in the spheri-
In principle, if the coefficient, in (2.9) does not vanish, cal model ford=4, the susceptibilityy(T,h) diverges as
the leading singular behavior of the ratio functi®(T) is  h—0 for T<T. and thus it is not useful to consider the ratio.
~(T—-T.)? and that should be detectable by DA analysis.However, the linear model leads to

C, B 12(1— yb?)(b2—1)3+A-34
C, 6[1+(2A—-3)bZ+(3+B—3A)[3a+(1-26)(2y—a)b?]b*’ (3.2
which, adopting Schofield’s choid@.5), gives
Ci _ 48(y—1)%(1—2B) Y 2(y—1)/(1—2B)(5—1)]P1 =32 .

C, 8(1-p)(28-3)+125-4B)y—y(6-1)[6(3+4B)+(6-1)(3y—208—-1)]"
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This again represents an extremum, actually a minimum in As regards the series for the planar lattices, only direct
magnitude ad varies in(3.2). Using the exact exponents Padeapproximants to the amplitude functions were calcu-

and Table | thereby leads to the estimates lated since singular corrections to scaling are not expected to
48027 play a significant rol¢23]. The behavior is found to be very
CHCr=— ~-1154.99 (d=2) good; our estimates are listed in Table I. Universality is well
474 11 supported with the value o ;/C ; listed in Table IlI.

Finally, it is interesting to compare the values in Table I
=—9.5999 (d=3). (34 with the mean-field valu€3.1) and the special linear model

Essam and Huntd:r_l_S] estimated the individual amp”_ ValUES(3.4). The trend withd is CorreCtly reprOduced, but

tudesC; and C,, but did not examine the ratios. Their the linear model results are too large by factors 1.07 and 9.5

estimates yieldC ;/C ; =—125.6+4.0 for the square lattice in d=3 and 2 dimensions, respectively, the vast discrepancy

and —156+10 for the triangular lattice: these are in poor for d=2 being, again, not so surprising.

accord with universality. For the bcc and fcc lattices, how-

ever, the values lead © ;/C ; =—9.0,+0.5, which we sus- IV. THIRD-ORDER AMPLITUDE RATIO

pect are more reliable because of their larger coordination The amplitude<C.> on various lattices were also exam
numbers. However, the sc and dia lattices suggest € piitu 3 variou ' w X

—9.7,+0.5. The case for universality is again not good. Butme.d by Essam and HuntéLs]. Howeyer, it'seems worth-

one might concludeC}/C ;=-9.4+0.8 for d=3. (We while to update them so that the universalityf may be

again give the full uncertainties checked. The low-temperature expansions (ff/dh), can
Fortunately, the low-temperature series, which are freP€ derived easily from Ref22]. Following the previous

quently poorly behavedthe critical point lyingoutsidethe sections, we have analyzed the amplitude series
circle of convergence for sc, bcc, and fcc latticesere —r1_ y+A
greatly extended by Sykes al.in 1973[22]. Series in pow- Ca(M)=[1=(Ulue) I (9xT o). .1

ers ofu=exp(—4J/kgT) can be derived fof,(T) to orders  First we have used the DA method, with the critical exponent

u”, u?, qndu4°_for the sc, bee, and fec lattices, respectively. gng temperature imposed, to study the correction expahent
In d=2 dimensions thelgquare lattice series run to owdér  ang estimate the amplitud€; . However, the correction
the trlang_ular Series tu_ . ) terms are again too small to be detected. Nevertheless, the
Following Liu and Fishef7], we analyzed the amplitude ¢ gistribution is fairly sharp. Since the correction terms
Series appear negligible, direct Padg@proximants are probably re-
Ca(TY=[ 1= (ulug) 722 (#?x/dh?), (3.5 liable. We have examined the last three orders of the near-

diagonal Padapproximants. The convergence proves rather
for T<T, and, similarly, abovd . with u replaced by. As  good for all lattices, the results being more precise than, but
already observed, the DA technique with imposed criticalin complete agreement with, the DA results. The resulting
point can reveal both the correction exponérdand the de- estimates are given in Table I.
sired critical amplitudesC; « C,(T.*). However, for both To estimate the universal rati®;, the amplitude8 and
T=T, and T<T_ the correction amplitudes are sufficiently C~ are also required. For the square lattice the former is
small that they cannot be detected. The generated estimatksown exactly, the latter very precisely. On the other hand,
for 6 are widely scattered and not significantly correlatedonly series estimates seem available for the triangular lattice
with the amplitude estimates. The latter, however, prove tamplitudeC™, although the amplitudB is again known ex-
be quite sharply distributed. Accordingly, we have based ouactly. To findC™ for the triangular lattice, we have used the
estimates on many high-order DAs, taking the two centralong high-temperature series, now available to update esti-
quartiles of the distributiof12] as a basis for our estimate. mates for the amplitud&™. The near-diagonal Padap-

Our conclusions are collected in Table I. For reasons disproximants yieldC"=0.9242+0.0002, which is also con-
cussed below in Sec. V, the central estimateG@ron the sc  firmed by the DA technique. The@,” can be derived via the
lattice has been displaced. The individual amplitude ratioprecisely known universal ratio fod=2 (see Table II).
for the bcc and fcc lattices ar€ ;/C,; =—8.9+0.8 and From Table I, we find
—8.9%0.2, respectively. As in the case of the Essam-Hunter
estimates, the magnitude of the sc amplitude ratio is larger: ] 33.05:0.94 (s0)
C4/C;,=-9.1+0.8. However, the discrepancy is now Rs= 33.06:0.26 (tri).
smaller, 0.2 in place of 0.7, and the shift in the sc lattice with
the longer series is larger. This supports the view that the bcAs one can see, universality is surprisingly well confirmed
and fcc results are probably more reliable. Nevertheless, ally the central values so one can be confident of the estimate
three estimates are consistent within the apparent uncertaifer d=2 given in Table III.
ties. For d=3 amplitudesB andC™ we may, as discussed in

The stability of the amplitude ratios to changes in theRef.[11], interpolate the results of Liu and Fishét] since
exponent assignments was checked by computations usibey considered several sets of critical-exponent assign-
v=0.6335 andy=1.2390[10] in place of the Table | values. ments. The entries for the sc and bcc lattices are quoted from
Likewise critical point shifts within the quoted uncertainties Ref. [11], whereas the fcc amplitudes are derived by inter-
were examined. No significant changes in the final estimategolation in the same manner. The amplitule, then, can be
result. Our overall estimate of the universal ratio dor3 is  derived via the universal rati€ */C~=4.95+0.15[7]. In
given in Table IlI. d=3, the third-order amplitude ratios on various lattices are

4.2
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6.43+0.33 (s0 for d=3. The universality across lattices of the same dimen-
R.—{ 6.46+0.58 (bco 4.3 sionality is well confirmed(Note, however, that for the sc
3 6.51+0.49 (fcc) ' lattice we use the displaced “central” estimates @f and

f1 in Table |, since these bring the central estimategfbr
Again, universality is well confirmed. For the overall esti- closer to the bcc and fcc ranges, which are both significantly
mate given in Table I, we have assigned greater weight temaller) Table Ill presents our overall estimates. The field-

the bce and fcc results. theoretic estimatel3,4] agree well with our series estimates
in both dimensions as do Baker's early series estin{digls
V. RENORMALIZED COUPLING CONSTANTS However, our estimates are more precise.

The amplitude ratidG; can be calculated by combining
To calculate the renormalized coupling constagifsand  the universal amplitude ratic*/C~, C;/C,, andf{/f]

g* defined in (1.8 and (1.10, the susceptibility and with g% (see Table Ili. In addition, the renormalized cou-
correlation-length amplitude§™ and f; are needed in ad- pling constanig* is readily calculated vidl1.11). The esti-
dition to C5 andCj . In the mean-field limit, hyperscaling is mates forC~ and f; are derived from the corresponding
violated unless one takes=4. Even then universality is not amplitudes above. and the universal ratio€ */C~ and
expected. However, following Tarko and FisHéa,29 we  f/f] given in Table Ill. In Table I, only thetrue
can identify¢4(T), on a simple hypercubic lattice, a&“/2d  correlation-length amplitude is listed =2. However, us-
with the resultf; =1/\/2d. Using this and the appropriate ing the estimated rati6*/f ; [25,26], one can obtairi; and
amplitudes obtained from the Ising mean-field equation ohencef; . We find
state[26] shows thatg* and g* have the same value and
are, as expected, positiysee Table Ill. However, the ratio . [254+113.9 (sq)

G, takes a very large negative value. g = . (5.9
One may calculate the = 4—d expansion for the non- 21.2:24.6 ()
universal amplitudes from the equation of state and the spinf- d=2 and
spin correlation function given in Reff27]: this yields ord=zan
g% =g* =S Y(d)[2e+O(eD)], (5.2) 87.5°855 (s0
o g* =4 83.5-81.8 (bco (5.7
G, =S Hd)[-¥e+0())], (5.2 86.5-59.2 (fcc)

where - .
for d=3. The very large uncertainties arise from the near

S(d)y=27Y?/(27)T (d/2). (5.3  cancellation in(1.11). However, despite this, the central es-
timates lie close to each other, so we suspect the uncertain-
The e expansion for the produ&(d)g* is known to orde®  ties assigned are too conservative. The average values are
[27] and agrees witli5.1). On expandingS(d) in powers of  given in Table Il as our best estimates, but without quoted
€, ourg* calculation is also consistent with the result stateguncertainties. o _
in [19]. It is remarkable thag* has the same expansion as In or_der to2 gaugze the uncertazmtles better, we have studied
g* to ordere. However, higher-order terms will disagree the series ["x/oh%) —3(dx/dh)*/x]/ x as well as the low-
since the series analysis for-2 reveals a large difference. It temperature series expansion it (T) itself. It transpires,
should also be noticed that theexpansions predict thaf' however, 'that neither of these gives bette_r results when using
andG; vanish atd=4, whereas the mean-field theory gives DA téchniques. Furthermore, the correction-to-scaling terms
nonzero finite values. This is because,eagoes to zero, the ndicated by DA methods are non-negligible so that direct
Wilson-Fisher Ising fixed point in the space of Hamiltonians Padeapproximants also do not yield satisfactory estimates.
approaches the Gaussian fixed point. Even though the latter MOSt of the universal amplitude ratios in Table III exhibit
reproduces the mean-field exponents, it does not fully repre2 Monotonic trend with :j|men3|cinallty. the exceptions are
sent the mean-field fixed point. For example, the spontandl€ hyperscaling ratiog: and G, . Even though the indi-
ous magnetization amplitudis v3u, from the Ising mean-  Vidual amplitudes definingg® and G; exhibit parallel
field equation of statg26], but the e expansion forB trends, the correlation-length amplitudés enter to the
diverges in leading order as Y2 [19]. powers ofd and this proves sufficient to destroy the overall
Upon using(1.9) and the amplitude estimates collected in monotonicity.

Table I, we find the renormalized coupling constant values

VI. SUMMARY
14.699+0.014 (sQ
9+=114.702-0.017 (tri) (5.4) Using modern estimateer exact valuesof critical points
and exponents fod=2 and 3 Ising systems, existing series
for d=2 and expansions for various lattices have been analyzed to esti-
mate the renormalized coupling constagfs and related
2455952 (sO universal amplitude ratio&ee Table 1l). Our estimates for
g% =4 24.3%£0.09 (bco (5.5  g* agree completely with previous® field theory results but

24.50+0.13 (fce) are more precise. Owing to the cancellation of large values
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