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Using modern estimates and exact values of critical points and exponents for Ising systems, existing series
expansions for various lattices are analyzed to estimate the universal amplitude ratioR0[(C 4

1)2/C1C 6
1,

whereC6 are the amplitudes of divergence of the susceptibilityx, above and belowTc , while Ck
6 are,

similarly, the amplitudes for (]k22x/]hk22)h50; we obtainR050.158260.0002 ford52 dimensions and
0.127560.0003 ford53. Similarly, we find the universal ratioC 4

1/C 4
2529.060.3 and2121.560.5 ford53

and 2, respectively. On using existing estimates forC1, for the second-moment correlation-length amplitude
f 1

1 , and for the universal ratiosC1/C2 and f 1
1/ f 1

2, we estimate the renormalized coupling constants to be
g1* 5G1

1[2C4
1/(C1)2( f 1

1a)d/v0524.4560.15 for d53 and 14.70060.017 ford52. BeneathTc we find
G 1

252501660, 21768680 and 2C 3
2B/(C2)256.4760.2, 33.0660.1, where B is the spontaneous-

magnetization amplitude, and thenceg2* .85 and 23 ford53 and 2, respectively.@S1063-651X~96!04008-1#

PACS number~s!: 05.50.1q, 03.70.1k, 64.60.2i, 75.10.Hk

I. INTRODUCTION

Perturbative expansions off4 field theory at fixed dimen-
sion d,4 have been studied to calculate critical exponents
such asa,b, etc. @1,2#. An important parameter that enters
the calculations is the renormalized coupling constantg. In
the critical region, the bare coupling constantg0 of the initial
Hamiltonian becomes infinite on the scale fixed by the cor-
relation length@3,4#, whereas the renormalized coupling con-
stantg will approach a finite nonzero limitg* at criticality
provided that hyperscaling holds@4–6#. Even though the
renormalized coupling constantg* plays an important role, it
seems not to have been analyzed by series extrapolation
techniques in light of recently improved knowledge of criti-
cal points and exponents for Ising systems@7#. Accordingly,
we have undertaken to estimateg*[g1* and alsog2* , the
renormalized coupling constant beneathTc that has a quite
distinct value, as well as various related universal amplitude
ratios for Ising lattices; we use existing long series expan-
sions for various lattices together with modern estimates of
exponents and critical temperatures.

To be more explicit, we employ the reduced temperature
variable

t[~T2Tc!/Tc ~1.1!

and the reduced field

h[m0H/kBT, ~1.2!

wherem0 is the magnetic moment per Ising spinsi561. For
h50, the reduced susceptibility diverges as

x5~]m/]h!T /m0'C6utu2g, t→06, ~1.3!

wherem(T,h) is the mean magnetization per spin. Likewise,
the higher field derivatives behave as

]x

]h
'C3

6utu2g2D,
]2x

]h2
'C4

6utu2g22D, ~1.4!

etc., whent→06, where, via the scaling relations, we have
D5b1g5111

2~g2a!. The second-moment correlation
lengthj1(T) @8# diverges as

j1' f 1
6autu2n, t→06, ~1.5!

wherea is the lattice spacing, while the spontaneous magne-
tization varies as

m0 /m0[^s&0'Butub. ~1.6!

Now, according to scaling and universality concepts, the
dimensionless amplitude ratiosf 1

1/ f 1
2, C1/C2, and

C 4
1/C 4

2 are universal, depending only ond ~for Ising sys-
tems!. Watson @9# seems to have been the first author to
stress this and provide examples. Two other universal dimen-
sionless combinations, involving amplitudes defined only
above or only belowTc , are@9,10# the sixth-order and third-
order ratios

R05~C4
1!2/C1C6

1 , R352C3B/~C
2!2. ~1.7!

Finally, the renormalized coupling constantg1* can be
defined by@3,4,6#

g1* 52 lim
t→01

~]2x/]h2!

x2j1
d/v0

U
h50

, ~1.8!

wherev0 is the volume per lattice site. In terms of the critical
amplitudes, the renormalized coupling constant can be writ-
ten

g1* 5G1
1[2C4

1/~C1!2~ f 1
1!d~ad/v0!, ~1.9!

where the factorad/v0 enters to account for the different
lattice geometries. It takes the value 1 for the plane square
~sq! lattice and 2/) for the triangular~tri! lattice. In d53,
one hasad/v051, 3

4), and& for the simple cubic~sc!,*Author to whom correspondence should be addressed.
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body-centered-cubic~bcc!, and face-centered-cubic~fcc! lat-
tices, respectively@7#. By using the amplitudes beneathTc ,
one can defineG1

2 in the same way and it should also be
universal.

However, belowTc , the renormalized coupling constant
g2* differs fromG1

2 owing to the broken symmetry. In con-
ception, the renormalized coupling constant is closely related
to the fourth derivative of the ‘‘Helmholtz free energy’’
A(T,m) with respect to the order parameterm sinceA(T,m)
resembles the underlying field-theoretic or Landau-
Ginzburg-Wilson Hamiltonian most closely. Thus, by relat-
ing (]4A/]m4) to appropriate field derivatives and replacing
~]2x/]h2! in ~1.8! by its counterpart, one can defineg* below
criticality via

g2* 52 lim
t→02

~]2x/]h2!23~]x/]h!2/x

x2j1
d/v0

U
h50

. ~1.10!

Note that, aboveTc , the derivative~]x/]h! vanishes identi-
cally when h50, so this expression, in effect, reduces to
~1.8!. In terms of the critical amplitudes belowTc , this
yields

g2* 52@C4
223~C3

2!2/C2#/~C2!2~ f 1
2!d~ad/v0!.

~1.11!

It turns out~via our results as summarized in Table III! that
g2* is positive, whereasG1

2 is negative. Naturally, for rea-
sons of stability, one expects the renormalized constant to be
positive.

Of course, the critical exponents and temperatures are ex-
actly known ford52 Ising systems. We will use

g513
4 , D517

8 ,

vc[tanh~J/kBTc!5&21 ~sq!, ~1.12!

vc522) ~ tri!.

For d53 Ising systems the corresponding parameters are
now rather well known as a result of series extrapolation and
Monte Carlo and renormalization-group studies@7,11#. The
values we have adopted are summarized in Table I. The lead-
ing correction-to-scaling term is important in estimating vari-
ous critical parameters including the amplitudes. Recent
work @11–14# indicates that the corresponding correction ex-
ponent is given by

u50.5460.03. ~1.13!

To estimate the various critical amplitudes from series
data, we have employed inhomogeneous differential approxi-
mants~DAs!. A particular DA for a given series is denoted
[K/L;M ], whereK, L, andM are degrees of the polynomi-
als that enter into the definition of the approximant: details of
the approach used are given in Ref.@7#. It has also proved
convenient to use direct Pade´ approximants [L/M ], which,
however, do not allow effectively for explicit background
terms.

In the following we first review, in Sec. II, the original
estimates forR0 obtained by Watson@9# and the predictions
of the linear model@10#. Then we analyze currently available
Ising model series data to estimateR0 for d52 and 3. In Sec.
III the critical amplitudesC4

6 are studied for sq, tri, sc, bcc,
and fcc lattices: these yield estimates for the ratioC 4

1/C 4
2

and confirm its universality. In Sec. IV the amplitudeC3
2 is

estimated for all these lattices; it is then used for studying the

TABLE I. Summary of the critical values and amplitudes for Ising lattices. Ford53, the critical expo-
nents adopted aren50.6320 andg51.2395. All other exponents used follow from the scaling and hyper-
scaling relations. The values and uncertainties of the critical pointsvc @[tanh(J/kBTc)# are those of Liu and
Fisher @7#; the amplitudesB, C1, and f 1

1 are derived from their estimates by interpolation. The asterisk
indicates that the exactly knowntrue correlation length amplitudef1 is quoted in place off 1

1 .

sq tri sc bcc fcc

vc &21 22) 0.218 071 0.156 082 0.101 709
60.000 012 60.000 007 60.000 005

B 1.222 410 1.203 270 1.685 1.61 1.591
60.035 60.025 60.007

C1 0.962 582 0.92422 1.0928 1.0216 1.0034
60.0002 60.0010 60.0008 60.0005

C3
2 20.01763 20.016 52 20.186 20.171 20.168

60.0005 60.000 05 60.002 60.002 60.003

C4
1 24.3788 24.0001 23.630 23.236 23.1704

60.0003 60.0005 10.003
20.017

60.002 60.0012

C4
2 0.0360 0.0330 0.40 0.365 0.357

60.0001 60.0002 60.03 60.03 60.008

f 1
1 0.567 296* 0.525 5264* 0.4984 0.4608 0.4496

10.0010
20.0050

60.0002 60.0006
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third-order amplitude ratioR3. Recent estimates are com-
bined with the up-to-date values forC1 and f 1

1 on various
d53 lattices in Sec. V to give estimates for the renormalized
coupling constantsg6* . The results are summarized briefly in
Sec. VI.

II. SIXTH-ORDER AMPLITUDE RATIO

As mentioned, Watson@9# noted that certain combinations
of critical amplitudes should be universal and for the exactly
solublespherical modelhe found

R05H 6
5550.109 09... ~d53!
1
10 ~d>4!,

~2.1!

where the spherical model value ford>4 also follows from
mean field theory. Then he used the individual amplitudes
C1, C4

1 , andC6
1 for the Ising model on various lattices as

estimated by Essam and Hunter@15#. This supported the uni-
versality hypothesis for Ising systems and led to

R0.H0.156 ~d52!

0.129 ~d53!. ~2.2!

It is also instructive to compute the universal ratioR0 by
using the so-called linear model of Schofield@16–18#, which
is a specific approximate, parametric representation@18# of
the Ising equation of state in the scaling region. In the linear
model t, h, andm are related via

t5r ~12b2u2!, h5rDl 0u~12u2!, m5r bm0u,
~2.3!

whereb.1 andl 0 andm0 are positive constants. The param-
eter r measures distance from criticality, whileu is a
pseudopolar angle in the (t,m) or (t,h) planes. Although the
linear model is not exact, it embodies the scaling laws and
correct analytic behavior in all limits. Furthermore, it agrees
precisely with thee expansion to ordere2 @19#.

After some labor@10#, one finds that the sixth-order am-
plitude ratio for the linear model can be written

R05
3~12b2g!2

5@2~12b2g!~322b2D!1b4g~g21!#
. ~2.4!

For the mean field exponentsg5D2b51 andD53/2,R0 is
seen to be independent of the parameterb, and the mean
field resultR05

1
10 is recovered. Otherwise,R0 depends onb.

To proceed, one may adopt the value

b25~d23!/~d21!~122b! where d5D/b, ~2.5!

which was recommended by Schofield, Litster, and Ho@17#.
At this value ofb the predicted ratioC1/C2 passes through
a minimum for fixed exponents. This choice leads to

R05
3g~12g!

5@~22a!212g~2a2g21!#
. ~2.6!

Surprisingly, this also proves to be an extremum function of
b; but it is a maximum rather than a minimum. Using the
exactd52 values and the estimates ford53 in Table I, the
special linear model thus predicts

R050.140 00 ~d52!

.0.1237 ~d53!. ~2.7!

These values correlate quite well with~2.2!. The;11% de-
viation for d52 is not surprising since the linear model is
known to fail ford&3.

Since Essam and Hunter’s work in 1968, longer Ising
model series have become available@20,21#: in terms of the
standard high-temperature variablev[tanh(J/kBT), these
are known to orderv14 for the plane triangular lattice and to
order v17 for the square lattice. Ford53, the expansions
have been derived to ordersv17, v13, v10, andv19 for the sc,
bcc, fcc, and diamond~dia! lattices, respectively.

To estimateR0 we form the series for the ratio function

R~T![@~]2x/]h2!0#
2/x~T!~]4x/]h4!0 , ~2.8!

which should exhibit the critical behavior

R~T!5R0~11r ut
u1r 1t1••• ! ~2.9!

when t→01. SinceR(T) remains finite atTc , it is reason-
able to examine near-diagonal direct Pade´ approximants
[L/M ] to the series. Data for the bcc lattice withL1M511,
12, and 13 are displayed in Table II. Evidently, the values
are quite well converged.

The other lattices exhibit equally good behavior except
that occasional approximants contain ‘‘tears,’’ i.e., close-by
zero-pole pairs in the physical regionv&vc ; such defective
approximants are discarded since, in general, they are of
lower reliability. To summarize, the last three orders for the
sc lattice generate approximants lying in the ranges 0.127 83
65, 0.127 8469, and 0.127 98618 to order 17, where, in
this section, the uncertainties quoted refer to the last decimal
place of the central value. For the fcc lattice we find 0.127 97
640, 0.127 53622, and 0.127 5364 to order 10 and for the
diamond lattice with vc50.353 81 @15#, 0.127 61683,

TABLE II. Estimates for the sixth-order amplitude ratioR0 for the bcc lattice obtained via direct Pade´
approximants evaluated at the critical point specified in Table I.

[L/M ] R0 [L/M ] R0 [L/M ] R0

@4/7# 0.12756 @4/8# 0.12750 @4/9# 0.12744
@5/6# 0.12741 @5/7# 0.12720 @5/8# 0.12738
@6/5# 0.12748 @6/6# 0.12708 @6/7# 0.12733
@7/4# 0.12748 @7/5# 0.12745 @7/6# 0.12738

@8/4# 0.12736 @8/5# 0.12716
@9/4# 0.12721
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0.127 81647, and 0.127 87637, to order 17. By examining
the full tables and the trends, one sees that universality is
rather well confirmed. Explicitly, for the individual lattices,
we estimate

R05H 0.127561 ~ fcc!
0.127462 ~bcc!
0.127963 ~sc!
0.128065 ~dia!.

~2.10!

Overall, accepting universality, we adopt the value entered in
Table III.

For the planar lattices, one finds ranges 0.158 04616,
0.158 49646, and 0.158 06610 for the square lattice to or-
der 17 and 0.158 1368, 0.158 1666, and 0.158 1862 for the
triangular lattice to order 14. Universality is again confirmed:
our overall estimate is given in Table III.

It is appropriate to test the sensitivity of the estimates
found to changes in the assumed critical points. In essence,
this also checks the magnitude and significance of the cor-
rection terms in~2.9!. To this end, Table II has been recom-
puted using the value (J/kBTc)50.157 408@10#, which ac-
tually lies well outside the range stated in Table I. The
resulting changes are very small: specifically, each entry
drops by one digit in the last decimal place. Since this is less
by a factor 10 or more than the changes from approximant to
approximant, the effect is quite negligible. For other lattices
the influence of the precise value of the critical point is com-
parably small.

In principle, if the coefficientau in ~2.9! does not vanish,
the leading singular behavior of the ratio functionR(T) is
;(T2Tc)

u and that should be detectable by DA analysis.

That, in turn, would allow for the effects of the nonanalytic
correction and yield improved estimates ofR0 from the
‘‘background’’: see@7#. In practice, however, the amplitude
au seems to be too small to be detectable in this way. Indeed,
unbiased approximants yield a wide range of critical point
estimates and a corresponding range ofu estimates. Even
when the preferred critical point is imposed, the distribution
of u estimates is broad and indefinite; the corresponding es-
timates forR0 are quite consistent with the direct Pade´ data
~as in Table II!, but the spread is much larger. In short, as
already indicated by the insensitivity to the assigned critical
point, the leading singular term in the expansion~2.9! is
either intrinsically small or is effectively cancelled by a com-
bination of analytic and higher order contributions. No ad-
vantage accrues by attempting to allow for it.

Finally, we remark that our estimates differ from Wat-
son’s in ~2.2! by only 11.4% and21.2% for d52 and 3,
respectively, while the special linear model value ford53 is
about 3% low.

III. FOURTH-ORDER SUSCEPTIBILITY
AMPLITUDE RATIO

Mean-field theory leads to the ratio

C4
1/C4

2522 ~3.1!

for the fourth-order susceptibilities above and belowTc .
Owing to the presence of ‘‘spin-wave’’ modes in the spheri-
cal model ford&4, the susceptibilityx(T,h) diverges as
h→0 for T,Tc and thus it is not useful to consider the ratio.
However, the linear model leads to

C4
1

C4
2 5

12~12gb2!~b221!31b23D

6@11~2D23!b2#1~31b23D!@3a1~122b!~2g2a!b2#b4
, ~3.2!

which, adopting Schofield’s choice~2.5!, gives

C4
1

C4
2 5

48~g21!4~122b!22@2~g21!/~122b!~d21!#b~123d!

8~12b!~2b23!112~524b!g2g~d21!@6~314b!1~d21!~3g220b21!#
. ~3.3!

TABLE III. Universal amplitude ratios. The ratiof 1
1/ f 1

2 in d52 is quoted from Ref.@24#. In three
dimensions, the estimates forC1/C2 and f 1

1/ f 1
2 are those of Ref.@7#. For the mean-field theory~MFT!

results, see Sec. V.

Ratio d52 d53 MFT

C1/C2 37.693 562 4.9560.15 2
R352C 3

2B/(C2)2 33.0660.1 6.4760.2 3
C 4

1/C 4
2 2121.560.5 29.060.3 22

R05(C 4
1)2/C1C 6

1 0.158260.0002 0.127560.0003 1
10

f 1
1/ f 1

2 3.2260.08 1.9660.01 A2
g1* 14.70060.017 24.4560.15 128
g2* 23 85 128
G1

2 21768680 2501660 21024
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This again represents an extremum, actually a minimum in
magnitude asb varies in ~3.2!. Using the exact exponents
and Table I thereby leads to the estimates

C4
1/C4

252
4802A7
11

.21154.99 ~d52!

.29.5999 ~d53!. ~3.4!

Essam and Hunter@15# estimated the individual ampli-
tudesC4

1 and C4
2 , but did not examine the ratios. Their

estimates yieldC 4
1/C 4

252125.664.0 for the square lattice
and 2156610 for the triangular lattice: these are in poor
accord with universality. For the bcc and fcc lattices, how-
ever, the values lead toC 4

1/C 4
2529.0560.5, which we sus-

pect are more reliable because of their larger coordination
numbers. However, the sc and dia lattices suggest
29.7760.5. The case for universality is again not good. But
one might concludeC 4

1/C 4
2529.460.8 for d53. ~We

again give the full uncertainties.!
Fortunately, the low-temperature series, which are fre-

quently poorly behaved~the critical point lyingoutsidethe
circle of convergence for sc, bcc, and fcc lattices!, were
greatly extended by Sykeset al. in 1973@22#. Series in pow-
ers ofu5exp~24J/kBT! can be derived forx4(T) to orders
u20, u28, andu40 for the sc, bcc, and fcc lattices, respectively.
In d52 dimensions the square lattice series run to orderu11,
the triangular series tou16.

Following Liu and Fisher@7#, we analyzed the amplitude
series

C4~T!5@12~u/uc!#
g12D~]2x/]h2!0 ~3.5!

for T<Tc and, similarly, aboveTc with u replaced byv. As
already observed, the DA technique with imposed critical
point can reveal both the correction exponentu and the de-
sired critical amplitudesC4

6 } C4~Tc6!. However, for both
T>Tc andT<Tc the correction amplitudes are sufficiently
small that they cannot be detected. The generated estimates
for u are widely scattered and not significantly correlated
with the amplitude estimates. The latter, however, prove to
be quite sharply distributed. Accordingly, we have based our
estimates on many high-order DAs, taking the two central
quartiles of the distribution@12# as a basis for our estimate.

Our conclusions are collected in Table I. For reasons dis-
cussed below in Sec. V, the central estimate forC4

1 on the sc
lattice has been displaced. The individual amplitude ratios
for the bcc and fcc lattices areC 4

1/C 4
2528.960.8 and

28.960.2, respectively. As in the case of the Essam-Hunter
estimates, the magnitude of the sc amplitude ratio is larger:
C 4

1/C 4
2529.160.8. However, the discrepancy is now

smaller, 0.2 in place of 0.7, and the shift in the sc lattice with
the longer series is larger. This supports the view that the bcc
and fcc results are probably more reliable. Nevertheless, all
three estimates are consistent within the apparent uncertain-
ties.

The stability of the amplitude ratios to changes in the
exponent assignments was checked by computations using
n50.6335 andg51.2390@10# in place of the Table I values.
Likewise critical point shifts within the quoted uncertainties
were examined. No significant changes in the final estimates
result. Our overall estimate of the universal ratio ford53 is
given in Table III.

As regards the series for the planar lattices, only direct
Padéapproximants to the amplitude functions were calcu-
lated since singular corrections to scaling are not expected to
play a significant role@23#. The behavior is found to be very
good; our estimates are listed in Table I. Universality is well
supported with the value ofC 4

1/C 4
2 listed in Table III.

Finally, it is interesting to compare the values in Table III
with the mean-field value~3.1! and the special linear model
values~3.4!. The trend withd is correctly reproduced, but
the linear model results are too large by factors 1.07 and 9.5
in d53 and 2 dimensions, respectively, the vast discrepancy
for d52 being, again, not so surprising.

IV. THIRD-ORDER AMPLITUDE RATIO

The amplitudesC3
2 on various lattices were also exam-

ined by Essam and Hunter@15#. However, it seems worth-
while to update them so that the universality ofR3 may be
checked. The low-temperature expansions for~]x/]h!0 can
be derived easily from Ref.@22#. Following the previous
sections, we have analyzed the amplitude series

C3~T!5@12~u/uc!#
g1D~]x/]h!0 . ~4.1!

First we have used the DA method, with the critical exponent
and temperature imposed, to study the correction exponentu
and estimate the amplitudeC3

2 . However, the correction
terms are again too small to be detected. Nevertheless, the
C3

2 distribution is fairly sharp. Since the correction terms
appear negligible, direct Pade´ approximants are probably re-
liable. We have examined the last three orders of the near-
diagonal Pade´ approximants. The convergence proves rather
good for all lattices, the results being more precise than, but
in complete agreement with, the DA results. The resulting
estimates are given in Table I.

To estimate the universal ratioR3, the amplitudesB and
C2 are also required. For the square lattice the former is
known exactly, the latter very precisely. On the other hand,
only series estimates seem available for the triangular lattice
amplitudeC2, although the amplitudeB is again known ex-
actly. To findC2 for the triangular lattice, we have used the
long high-temperature series, now available to update esti-
mates for the amplitudeC1. The near-diagonal Pade´ ap-
proximants yieldC150.9242260.0002, which is also con-
firmed by the DA technique. Then,C2 can be derived via the
precisely known universal ratio ford52 ~see Table III!.
From Table I, we find

R35 H33.0560.94 ~sq!
33.0660.26 ~ tri!. ~4.2!

As one can see, universality is surprisingly well confirmed
by the central values so one can be confident of the estimate
for d52 given in Table III.

For d53 amplitudesB andC1 we may, as discussed in
Ref. @11#, interpolate the results of Liu and Fisher@7# since
they considered several sets of critical-exponent assign-
ments. The entries for the sc and bcc lattices are quoted from
Ref. @11#, whereas the fcc amplitudes are derived by inter-
polation in the same manner. The amplitudeC2, then, can be
derived via the universal ratioC1/C254.9560.15 @7#. In
d53, the third-order amplitude ratios on various lattices are

1180 54SHUN-YONG ZINN, SHENG-NAN LAI, AND MICHAEL E. FISHER



R35H 6.4360.33 ~sc!
6.4660.58 ~bcc!
6.5160.49 ~ fcc!.

~4.3!

Again, universality is well confirmed. For the overall esti-
mate given in Table III, we have assigned greater weight to
the bcc and fcc results.

V. RENORMALIZED COUPLING CONSTANTS

To calculate the renormalized coupling constantsg1* and
g2* defined in ~1.8! and ~1.10!, the susceptibility and
correlation-length amplitudesC6 and f 1

6 are needed in ad-
dition toC3

2 andC4
6 . In the mean-field limit, hyperscaling is

violated unless one takesd54. Even then universality is not
expected. However, following Tarko and Fisher@24,25# we
can identifyj1

2(T), on a simple hypercubic lattice, asxa2/2d
with the result f 1

151/A2d. Using this and the appropriate
amplitudes obtained from the Ising mean-field equation of
state@26# shows thatg1* and g2* have the same value and
are, as expected, positive~see Table III!. However, the ratio
G1

2 takes a very large negative value.
One may calculate thee 5 42d expansion for the non-

universal amplitudes from the equation of state and the spin-
spin correlation function given in Refs.@27#: this yields

g1* 5g2* 5S21~d!@ 2
3 e1O~e2!#, ~5.1!

G1
25S21~d!@2 16

3 e1O~e2!#, ~5.2!

where

S~d![2pd/2/~2p!dG~d/2!. ~5.3!

Thee expansion for the productS(d)g1* is known to ordere3

@27# and agrees with~5.1!. On expandingS(d) in powers of
e, our g1* calculation is also consistent with the result stated
in @19#. It is remarkable thatg2* has the same expansion as
g1* to order e. However, higher-order terms will disagree
since the series analysis ford52 reveals a large difference. It
should also be noticed that thee expansions predict thatg6*
andG1

2 vanish atd54, whereas the mean-field theory gives
nonzero finite values. This is because, ase goes to zero, the
Wilson-Fisher Ising fixed point in the space of Hamiltonians
approaches the Gaussian fixed point. Even though the latter
reproduces the mean-field exponents, it does not fully repre-
sent the mean-field fixed point. For example, the spontane-
ous magnetization amplitudeB is)m0 from the Ising mean-
field equation of state@26#, but the e expansion forB
diverges in leading order ase21/2 @19#.

Upon using~1.9! and the amplitude estimates collected in
Table I, we find the renormalized coupling constant values

g1* 5 H14.69960.014 ~sq!
14.70260.017 ~ tri! ~5.4!

for d52 and

g1* 5H 24.5520.25
10.95 ~sc!

24.3960.09 ~bcc!
24.5060.13 ~ fcc!

~5.5!

for d53. The universality across lattices of the same dimen-
sionality is well confirmed.~Note, however, that for the sc
lattice we use the displaced ‘‘central’’ estimates forC4

1 and
f 1

1 in Table I, since these bring the central estimate forg1*
closer to the bcc and fcc ranges, which are both significantly
smaller.! Table III presents our overall estimates. The field-
theoretic estimates@3,4# agree well with our series estimates
in both dimensions as do Baker’s early series estimates@18#.
However, our estimates are more precise.

The amplitude ratioG1
2 can be calculated by combining

the universal amplitude ratiosC1/C2, C 4
1/C 4

2, and f 1
1/ f 1

2

with g1* ~see Table III!. In addition, the renormalized cou-
pling constantg2* is readily calculated via~1.11!. The esti-
mates forC2 and f 1

2 are derived from the corresponding
amplitudes aboveTc and the universal ratiosC1/C2 and
f 1

1/ f 1
2 given in Table III. In Table I, only thetrue

correlation-length amplitude is listed ind52. However, us-
ing the estimated ratiof1/ f 1

1 @25,26#, one can obtainf 1
1 and

hencef 1
2 . We find

g2* 5 H25.46113.9 ~sq!
21.2624.6 ~ tri! ~5.6!

for d52 and

g2* 5H 87.5268.5
186.5 ~sc!

83.5681.8 ~bcc!
86.5659.2 ~ fcc!

~5.7!

for d53. The very large uncertainties arise from the near
cancellation in~1.11!. However, despite this, the central es-
timates lie close to each other, so we suspect the uncertain-
ties assigned are too conservative. The average values are
given in Table III as our best estimates, but without quoted
uncertainties.

In order to gauge the uncertainties better, we have studied
the series [(]2x/]h2)23(]x/]h)2/x]/x as well as the low-
temperature series expansion forg2* (T) itself. It transpires,
however, that neither of these gives better results when using
DA techniques. Furthermore, the correction-to-scaling terms
indicated by DA methods are non-negligible so that direct
Padéapproximants also do not yield satisfactory estimates.

Most of the universal amplitude ratios in Table III exhibit
a monotonic trend with dimensionalityd: the exceptions are
the hyperscaling ratiosg6* andG1

2 . Even though the indi-
vidual amplitudes definingg6* and G 1

2 exhibit parallel
trends, the correlation-length amplitudesf 1

6 enter to the
powers ofd and this proves sufficient to destroy the overall
monotonicity.

VI. SUMMARY

Using modern estimates~or exact values! of critical points
and exponents ford52 and 3 Ising systems, existing series
expansions for various lattices have been analyzed to esti-
mate the renormalized coupling constantsg6* and related
universal amplitude ratios~see Table III!. Our estimates for
g1* agree completely with previousf4 field theory results but
are more precise. Owing to the cancellation of large values
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via subtraction, we were unable to gauge the uncertainties in
our g2* estimates reliably. However, the central estimates for
the sc, bcc, and fcc lattices lie close together so that the
average values should serve as reasonable estimates. Other
amplitude ratios on various lattices, such asC 4

1/C 4
2, R0,

andR3, confirm universality very well. The agreement with
the linear model predictions ford53 is quite good.
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